Q1,ある古書チェーン店の本社で、各店舗の1日平均売上状況を調査しています。
【各店舗売上状況 1日平均】
店舗名 | A | B | C | D | E |
売上金額
(円) |
250,000 | 320,000 | 280,000 | 230,000 | 265,000 |
買取冊数
(冊) |
1,250 | 1,500 | 1,800 | 1,000 | 1,400 |
買取平均価格(円) | 50 | 30 | 25 | 55 | 45 |
店員数
(人) |
3 | 5 | 2 | 4 | 3 |
売上利益(円) | 187,500 | 275,000 | 235,000 | 175,000 | ? |
店舗Eの1日平均売上利益はいくらと推測できるか。
A 198,000円
B 200,000円
C 202,000円
D 204,000円
E 206,000円
解答:C 202,000円
解説:売上利益=売上金額ー買取冊数×買取平均価格で求められる。
よって、E店舗の売上利益は265,000-1,400×45=202,000
Q2,F商店で、年間のビールと茶の販売量についてまとめています。
【F商店販売量】
2000年 | 2001年 | 2002年 | 2003年 | 2004年 | 2005年 | |
ビール
(ケース) |
4,215 | 4,103 | 4,013 | 3,812 | 3,715 | ? |
茶
(ケース) |
723 | 745 | 768 | 912 | 946 | 1,012 |
2005年のビールの販売量は何ケースと推測できるか。
A 3,594ケース
B 3,806ケース
C 3,902ケース
D 4,102ケース
E 4,214ケース
解答:A 3,594ケース
解説:茶とビールは反比例の関係にある。
2004年に比べて2005年の茶の販売量は増えているので、ビールの販売量は減る。
よって3,715より少ない3,594が答えとなる。
Q3,ある洋菓子店で、火曜から金曜までのケーキ売上個数を集計しています。
【ケーキ売上個数】
火曜日 | 水曜日 | 木曜日 | 金曜日 | |
いちごショート
(個) |
123 | 136 | 128 | ? |
モンブラン
(個) |
82 | 69 | 72 | 91 |
ショコラ
(個) |
66 | 67 | 98 | 74 |
総売上個数
(個) |
410 | 452 | 428 | 469 |
金曜日のいちごショートの売り上げ個数はいくらと推測できるか。
A 96個
B 119個
C 128個
D 135個
E 141個
解答:E 141個
解説:いちごショートの売り上げ個数が増えれば増えるほど、総売上個数も増える。
金曜日が総売上個数が469個で最も多いので、水曜日の136個よりも多くなる。
よって141個が答えとなる。
Q4,ある外資系自動車会社で、日本での車両価格を全面改定することになりました。
【価格改定案】
車のグレード | 改定前の価格
(万円) |
改定後の価格
(万円) |
競合M社の価格
(万円) |
Aクラス | 800 | 675 | 750 |
Bクラス | 600 | 495 | 550 |
Cクラス | 400 | 315 | 350 |
Dクラス | 300 | 225 | 250 |
Eクラス | 200 | ? | 150 |
Eクラスの改定後の価格はいくらと推測できるか。
A 120万円
B 125万円
C 130万円
D 135万円
E 140万円
解答:D 135万円
解説:改定後の価格は、(競合M社の価格)ー(競合M社の価格の上2桁万円)を引いた値である。
よって、Eクラスは150-15=135万円が答えとなる。
Q5,ある鉄道会社で、特急料金の見直しを行なっています。
【A駅からの運賃表】
B駅 | C駅 | D駅 | E駅 | F駅 | |
A駅からの距離(km) | 11.8 | 20.5 | 30.8 | 40.9 | 49.9 |
普通運賃
(円) |
220 | 290 | 410 | 550 | 620 |
特急料金
(円) |
330 | 435 | 615 | 825 | ? |
A~F駅間の特急料金はいくらと推測できるか。
A 900円
B 930円
C 960円
D 990円
E 1,020円
解答:B 930円
解説:普通料金×1.5=特急料金となる。
よって、F駅までの料金は620×1.5=930
Q6,あるコンサルタント会社で、本社と2つの支社の従業員数についてまとめています。
【本社と2支社の従業員数】
2002年度 | 2003年度 | 2004年度 | 2005年度 | |
本社(百人) | 9 | 11 | 14 | 14 |
支社1(百人) | 3 | 3 | 5 | 4 |
支社2(百人) | 3 | 6 | 6 | ? |
支社2の2005年度の従業員数は何人と推測できるか。
A 8百人
B 9百人
C 10百人
D 11百人
E 12百人
解答:E 12百人
解説:本社+支社1+支社2の合計が5ずつ増えている。
2004年度は25なので、2005年度は30になる。
よって、支社2の数は12百人
Q7,照明器具が老朽化したため、入れ替え個数を見積もっています。
【照明器具】
階数
(階) |
3 | 4 | 5 | 6 | 7 |
社員数
(人) |
250 | 200 | 220 | 150 | 200 |
課の数
(課) |
20 | 18 | 30 | 25 | 15 |
照明器具必要数(箇所) | 145 | 118 | ? | 100 | 115 |
5階の照明器具必要数は何箇所と推測できるか。
A 125箇所
B 130箇所
C 135箇所
D 140箇所
E 145箇所
解答:D 140箇所
解説:必要な照明器具は社員数÷2+課の数である。
よって5階の照明器具必要数は220÷2+30=140
Q8,ある会社で、サンプルごとの宅配便発送料金をまとめています。
【サンプル別発送料金】
サンプル | A | B | C | D | E | F |
重さ
(kg) |
15 | 11 | 14 | 13 | 9 | 12 |
距離
(km) |
148 | 88 | 123 | 115 | 78 | 102 |
発送料金
(円) |
1,490 | 1,380 | 1,490 | 1,380 | 1,270 | ? |
サンプルFの発送料金はいくらと推測できるか。
A 1,160円
B 1,270円
C 1,380円
D 1,490円
E 1,600円
解答:D 1,380円
解説:重さと距離、両方ともBとDの間にあるので、発送料金はBとDと同じの1,380円と推測される。
Q9,ある研究所で、細菌のコロニー数を調べる実験をしています。
【各条件でのコロニー数】
実験 | A | B | C | D | E | F |
時間
(時間) |
1 | 1 | 2 | 2 | 3 | 3 |
室温
(℃) |
20 | 20 | 20 | 20 | 20 | 20 |
湿度
(%) |
40 | 80 | 40 | 80 | 40 | 80 |
肥料量
(g) |
2.0 | 4.0 | 3.0 | 2.5 | 3.5 | 3.0 |
コロニー数(個) | 9 | 6 | 18 | ? | 33 | 24 |
実験Dのコロニー数は何個と推測できるか。
A 6個
B 15個
C 20個
D 23個
E 37個
解答:B 15個
解説:同じ時間数であれば、湿度が高ければ、肥料量に関係なくコロニー数は減る。
その時点で、Dのコロニー数は6個か15個。
時間が長ければ長いほどコロニー数は増えるので、15個が答えとなる。
Q10,ある自動車メーカーで、自社製品の販売台数について調べています。
【自社製品の3ヶ月ごとの販売台数】
A車 | B車 | C車 | D車 | |
1〜3月期
(台) |
6,000 | 8,000 | 4,500 | 5,400 |
4〜6月期
(台) |
8,000 | 6,000 | 6,000 | 4,050 |
7〜9月期
(台) |
4,000 | 12,000 | 3,000 | 8,100 |
10〜12月期(台) | 3,000 | 16,000 | ? | 10,800 |
10〜12月期のC車の販売台数は何台と推測できるか。
A 2,250台
B 2,500台
C 2,750台
D 3,000台
E 3,250台
解答:A 2,250台
解説:C車はA車の3/4の値である。
よって、10~12月期は3000×3/4=2250